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Abstract This paper is a final write-up for the car-
diac segmentation and diagnosis project. Cardiac MRI
is considered the gold standard if cardiac function anal-
ysis. However, manual evaluation is expensive and non-
reproducible. In this project, we created an automatic
pipeline consisting of segmentation and cardiac disease
classification to tackle the “Automatic Cardiac Diagno-
sis Challenge” (ACDC) using the deep learning method.
We evaluated the performance of three UNet like mod-
els, and the best one was used to participate in the
ACDC segmentation challenge. Dynamic and instant
features were extracted using the segmentation result,
and an ensemble of MLP and random forest classifiers
were trained to do the diagnosis challenge. Our model
proved its accuracy in the segmentation challenge on
the ACDC test set and achieved promising classifica-
tion results on the training set. Our project won first
place in the class competition and demonstrated how
small changes in the training model could improve over-
all performance.

1 Introduction

Analysis of cardiac function is important in clinical car-
diology. Because Cardiac MRI (CMR) can discriminate
different types of tissues, it is considered as the gold
standard of cardiac function analysis through the as-
sessment of the left and right ventricular ejection frac-
tion (EF) and stroke volumes (SV), the left ventricle
mass, and myocardium thickness. [1] However, manu-
ally evaluating these time series is expensive and non-
reproducible; the huge benefits of CMRI are still not
exploited in today’s clinical routine. Accurate and auto-
matic approaches for simultaneous multi-structure seg-
mentation and computer-assisted diagnosis are thus de-
sirable.

Our team proposed an automatic approach for CMRI
scans segmentation and classification of cardiac diseases
in this project. Based on the segmentation for each time
step of the CMRI, domain-specific features were ex-
tracted motivated by the cardiologist’s workflow. These
features were then used to train an ensemble of MLP
and random forest classifiers. Finally, we evaluated our
methods for segmentation and diagnosis on the ACDC
data set [2] and achieved dice scores of 0.945 (LVC),
0.885 (RVC), and 0.900 (LVM) on the test set (50 cases).
We reported a classification accuracy of 74% on the test
set.

2 Theory and Background

Convolutional neural networks (CNN) have shown
outstanding performance in medical image segmenta-
tion [3], where UNet-like architectures are often used [4].

There are two paths in UNet, down-sampling, and up-
sampling. The down-sampling path is used to extract
and interpret the context (local contextual informa-
tion), while the up-sampling path is used to enable
precise localization (global information). The coarse
contextual information captured by the down-sampling
path is transferred to the up-sampling path by means of
skip connections. In 2017, Fabian et al. used an ensem-
ble of UNet inspired architectures for segmentation of
cardiac structures on each time instance of the cardiac
cycle and won first place in ACDC 2017 segmentation
challenge and found that 2D UNets outperformed 3D
UNets with the ACDC dataset [5].

Our project implemented the original 2D UNet model
first [4], and its performance was reported. After that,
several modifications were made to this model to ac-
count for some of its inherent drawbacks. Odena et
al. [6]found that the transposed convolution layer used
in the original 2D UNet for upsampling can create
a characteristic checkerboard-like pattern of varying
magnitudes. Alternatives upsampling methods such as
nearest-neighbor interpolation or bilinear interpolation
could be used to avoid that artifact and speed up the
learning.

Deep supervision is a technique that combines segmen-
tation maps created at different points in the network.
This idea was used in the original FCN-design by Long
et al. [7] to reduce the coarseness of the final segmenta-
tion. Chen et al. [§] [9] implemented deep supervision
on 3D medical image segmentation by creating multiple
segmentation maps at different resolutions and bring to
a matching resolution by deconvolution and combined
via element-wise summation. Kayalibay et al. [10] found
that in a UNet like model, deep supervision can be used
to speed up convergence by “encouraging” earlier lay-
ers of the network to produce good segmentation re-
sults. Moreover, deep supervision could alleviate the
class imbalance in our dataset. [8] [9]

Both modifications were made to our original UNet, and
the improvements of these modifications were reported.
Computer-assisted diagnosis (CAD) uses texture infor-
mation to discriminate healthy from pathology tissue.
Medrano-Gracia et al. found the major principal modes
of shape variation to be associated with known clin-
ical indices of adverse modeling, including heart size,
sphericity, and concentricity [II]. Fabian et al. [5] ex-
tracted two sets of features from their segmentation re-
sults to perform disease classification. All features were
designed to quantify the traditional assessment proce-
dures of expert cardiologists by describing static and
dynamic properties of the structures of interest.
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Fig. 1: Project Pipeline

In the project, the modified UNet model was used to
perform multi-structure segmentation for each time step
of the CMRI. Motivated by the cardiac diagnosis work-
flow that is used in clinical practice, we extracted both
dynamic and instant features from our segmentation re-
sults. These features were then used to train an ensem-
ble of MLP and random forest classifiers. (See Figure.1)
Finally, we evaluated our methods for segmentation and
diagnosis on the ACDC data set.

3 Methods

Dataset The ACDC dataset includes short-axis cine-
MRI of 150 patients acquired in daily clinical prac-
tice. Each time series is composed of 28 to 40
3D volumes. 150 patients are evenly divided into 5
subgroups: patients with previous myocardial infarc-
tion (MINF), dilated cardiomyopathy (DCM), hyper-
trophic cardiomyopathy (HCM), abnormal right ven-
tricle (ARV), and normal(healthy) subjects (NOR). In
addition, the height and weight for each patient are also
provided. The training dataset is composed of 100 pa-
tients, i.e., 20 for each group. There are 50 patients in
the test set, i.e., 10 for each group. The ground truth
for segmentation and classification is provided for the
training set by two independent experts who had to
reach a consensus in case of discordance.

Data set analysis:Why choose 2D UNet over 3D?
The training model (modified 2D UNet) was selected
based on the characteristic of our dataset and the com-
puting power we have. The dataset has high in-plane
resolution ranging from 0.49 to 3.69 mm? and a low
resolution (5-10mm) in the direction of the long axis of
the heart. Therefore, most of the pathological informa-
tion is concentrated in the 2D plane, and the data is
relatively sparse along the long axis. In terms of ex-
tracting useful features, 2D UNet should be sufficient,
and implementing 3D UNet might not significantly im-
prove the segmentation result. Moreover, implementing
3D UNet means we need to face the problem of data
scarcity along the long axis. Although this problem
could be solved by performing interpolation along the

long axis to create more data, we didn’t have enough
computing resources to do a 3D convolution training
that acquires much higher memory and a more power-
ful GPU. Another potential risk of using 3D UNet is
that it is more prone to overfitting since 3D UNet uses
the whole 3D volume as input. But for each patient, we
only have two 3D volumes that can be used for training,
one at ED and one at ES.

Data preprocessing: We first resampled all volumes
to 1.25 X 1.25 X Z,pi9in mm per voxel to address the
varying spatial resolution problem in our dataset. Sec-
ond, the intensity of every image was normalized, so
they all have zero means and unit variances. Vari-
ous data augmentation techniques were used to help
train a well-generalized model on limited data. The
methods implemented including random crop, horizon-
tal/vertical flip. The region of interest was selected us-
ing prior knowledge of knowing the heart is at the center
of each slice in this dataset. A 270 by 270 pixels cen-
ter crop was implemented first to filter out the region
of interest, then a 256 by 256 pixels random crop was
performed within ROI to generate a training image.
UNet Modifications: In this project, we decided to
implement the original UNet first, evaluate its perfor-
mance, understand its pros and cons, and then try to
modify it to perform better in the challenge. Upsam-
pling is a crucial step in UNet as precise localization is
achieved during up-sampling by combining the contex-
tual information from the contracting path. However,
one drawback of the original UNet actually comes from
upsampling. The transposed convolution used in this
expansive path can create a checkerboard-like pattern
of varying magnitudes when processing 2D images. The
checkerboard artifacts undoubtedly harmed our seg-
mentation. Therefore the first change we made to the
model was switching the transposed convolution to bi-
linear upsampling followed by a one by one convolution
layer. Here we had a couple of choices when choosing
the interpolation method. For instance, we could have
used nearest neighbor or higher-order B splines. We
used bilinear mainly because it’s quick and smoother
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Fig. 2: Final network architecture

than the nearest neighbor. We hope this change could
eliminate the artifacts and speed up the training.
Another common yet critical problem that calls for
modifications of our model is class imbalance. In our
dataset, voxels are dominated by background. Espe-
cially in this project, we only have one background, but
three foreground classes. Class imbalance is an over-
whelming issue. Element-wise sum and upsampling are
used in deep supervision to combine segmentation maps
at different resolutions to a matching resolution. As
mentioned in the background section, this technique can
speed up the convergence, improve the discriminative
ability of our network, and alleviate class imbalance.

Final network architecture: Combining the two
modifications we mentioned above, our final model that
was used for the challenge is depicted in figure2. All
three models mentioned above were trained for 100
epochs using the ADAM solver and a pixel-wise cat-
egorical cross-entropy loss. The initial learning rate of
5 x 10~* was decayed by 0.94 per epoch. As mentioned
in preprocessing section, training examples were gener-
ated as a random crop of 256 by 256 pixels taken from
a randomly selected slice in the collection of all ED and
ES slices of all patients in the training set. The initial
feature maps are 48, and the network is trained with a
batch size of 10. Each feature extraction block (shown
in gray in fig 2) consists of two zero-padded 3X3 con-
volutions, followed by batch normalization and ReLLU
activation. The initial feature maps are doubled with
each of the four max pooling layers and halved with
each of the four upsampling operations. Deep supervi-
sion is implemented using the last two lower resolution

segmentation results. First, the segmentation map with
the lowest resolution is upsampled with bilinear inter-
polation to have the same size as the second-lowest res-
olution segmentation map. The sum of the two is then
upsampled and added to the highest-resolution segmen-
tation map in the same way.

Classification: Both dynamic and instant features
were extracted. The features were selected to quan-
tify the traditional clinical assessment procedures by
describing static and dynamic properties. All features
we used are listed in Figure 3.

Instant Features RV MYO Lv
max thickness* X

min thickness= X

std thickness* X

mean thickness* X

std thickness of LVM between LVC and RVC*

mean thickness of LVM between LVC and RVC*

mean circularity=* X X

max circumferencex X X

mean circumference* X X

patient weight

patient height

Dynamic volume feature RV MYO LV
Vmax X X X
Vmin X X X
dynamic ejection fraction X X X
volume median X X X
volume kurtosis X X X
volume skewness X X X
volume standard deviation X X X

Fig. 3: Features Table

To extract the dynamic volume features throughout



the entire cardiac cycle. We first used the trained seg-
mentation model to predict anatomical structures in all
time steps of CMRI. Then the features in Fig.3 were
calculated for each patient using the segmentation re-
sult. These features were used to train an ensemble of
multilayer perceptrons (MLP) and a random forest for
pathology classification. The MLP is trained for 1000
epochs using the ADAM solver with an initial learning
rate of 5 e-4. The random forest was trained with 1000
trees. During resting, the softmax outputs of all MLPs
were averaged and are combined sequentially with the
random forest output to obtain the final ensemble pre-
diction.

4 Experiments and Results:
Results of our modifications: By switching trans-
posed convolution in the original UNet to bilinear
upsampling, we reduced the cross-entropy loss on
the training set by 5.45%. The dice scores of the
validation set were improved by 1.5689%, 0.3208%,
1.358% for LV, RV, and MYO, respectively. By adding
the deep supervision to our modified UNet model,
the cross-entropy loss on the training set was further
reduced by 4.48%. The dice scores of the validation set
were further improved by 0.7%, 1.77%, 0.67% for LV,
RV, and MYO, respectively. We noticed that the dice
score of RV is more sensitive to the change of deep su-
pervision than the change of bilinear upsampling. This
result may imply the insertion of coarse segmentation
results especially helped the classification of RV. Using
our final network architecture, we achieved individual
dice scores of 0.961 for LV, 0.943 for RV, and 0.9193
for MYO. (Detailed results can be found in table2).
Based on the segmentation result, geometric features
were extracted and utilized by an ensemble classifier to
predict the diagnosis, yielding promising outcomes for
the training dataset. We received a 93% accuracy for
the training set.

Pathology Dice LV Dice RV Dice MYO
DCM | 0.977 0.944 0.913
HCM | 0.937 0.926 0.936
MINF | 0.969 0.930 0.914
NOR | 0.964 0.955 0.928
RV | 0.958 0.961 0.905

Fig. 4: Training set result

5 Discussion:

We achieve dice scores of 0.945(LV), 0.885(RV),
0.90(LVM) on the ACDC test set, which earned us
first place in the segmentation part of the project
one competition. We ranked 4th in the classification
challenge.  The fact that our great segmentation
results didn’t yield a promising classification on the
test set is a little frustrating, but after listening to
other groups’ presentations, we realized there are two

main problems in our prediction model. The first
and foremost problem is overfitting. Group 4, who
won first place in the prediction competition, had
fewer extracted features than us but used a ten folds
cross-validation. The use of cross-validation had a huge
impact in this sense of avoiding overfitting. We believe
by adding cross-validation and drop out to our model,
decreasing the layers in the MLP, our model can be
boosted significantly. The second problem is extracting
inaccurate features such as the myocardium’s thickness.
Extracting myocardium thickness from segmentation
results at apical and basal slice can be really challeng-
ing, and the algorithm we implemented ( a canny edge
detector that outlines the myocardium and calculates
the minimum distance between the outlines) can give
us false results at these slices. An example is given
in Fig.5. A more robust feature extractor or simply
dumping the inaccurate features can help to improve
the classification as well.

Apical Slice Segmentation Basal Slice Segmentation

Fig. 5: Problematic segmentation results

6 Team Member Contributions:
Generally speaking, Wenkai and I did the first project.
Angelina and Chenyu did the second project. In this
project, Wenkai and I worked together throughout
the project. Because this is our first time implement-
ing deep learning, we always discuss together, learn
from the internet together, and help each other out
whenever we encountered problems. More specifically,
I was in charge of designing and training the model
for segmentation, extracting dynamic features, and
Wenkai was in charge of data preprocessing, extracting
instant features, and training the classifier. Here I
want to give a huge shoutout to my teammate. We
made this project happen together.
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